(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
compS_f#1(compS_f(x2), x1) → compS_f#1(x2, S(x1))
compS_f#1(id, x3) → S(x3)
iter#3(0) → id
iter#3(S(x6)) → compS_f(iter#3(x6))
main(0) → 0
main(S(x9)) → compS_f#1(iter#3(x9), 0)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
compS_f#1(compS_f(x2), x1) → compS_f#1(x2, S(x1))
compS_f#1(id, x3) → S(x3)
iter#3(0') → id
iter#3(S(x6)) → compS_f(iter#3(x6))
main(0') → 0'
main(S(x9)) → compS_f#1(iter#3(x9), 0')
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
compS_f#1(compS_f(x2), x1) → compS_f#1(x2, S(x1))
compS_f#1(id, x3) → S(x3)
iter#3(0') → id
iter#3(S(x6)) → compS_f(iter#3(x6))
main(0') → 0'
main(S(x9)) → compS_f#1(iter#3(x9), 0')
Types:
compS_f#1 :: compS_f:id → S:0' → S:0'
compS_f :: compS_f:id → compS_f:id
S :: S:0' → S:0'
id :: compS_f:id
iter#3 :: S:0' → compS_f:id
0' :: S:0'
main :: S:0' → S:0'
hole_S:0'1_0 :: S:0'
hole_compS_f:id2_0 :: compS_f:id
gen_S:0'3_0 :: Nat → S:0'
gen_compS_f:id4_0 :: Nat → compS_f:id
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
compS_f#1, iter#3
(6) Obligation:
Innermost TRS:
Rules:
compS_f#1(
compS_f(
x2),
x1) →
compS_f#1(
x2,
S(
x1))
compS_f#1(
id,
x3) →
S(
x3)
iter#3(
0') →
iditer#3(
S(
x6)) →
compS_f(
iter#3(
x6))
main(
0') →
0'main(
S(
x9)) →
compS_f#1(
iter#3(
x9),
0')
Types:
compS_f#1 :: compS_f:id → S:0' → S:0'
compS_f :: compS_f:id → compS_f:id
S :: S:0' → S:0'
id :: compS_f:id
iter#3 :: S:0' → compS_f:id
0' :: S:0'
main :: S:0' → S:0'
hole_S:0'1_0 :: S:0'
hole_compS_f:id2_0 :: compS_f:id
gen_S:0'3_0 :: Nat → S:0'
gen_compS_f:id4_0 :: Nat → compS_f:id
Generator Equations:
gen_S:0'3_0(0) ⇔ 0'
gen_S:0'3_0(+(x, 1)) ⇔ S(gen_S:0'3_0(x))
gen_compS_f:id4_0(0) ⇔ id
gen_compS_f:id4_0(+(x, 1)) ⇔ compS_f(gen_compS_f:id4_0(x))
The following defined symbols remain to be analysed:
compS_f#1, iter#3
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
compS_f#1(
gen_compS_f:id4_0(
n6_0),
gen_S:0'3_0(
b)) →
gen_S:0'3_0(
+(
+(
1,
n6_0),
b)), rt ∈ Ω(1 + n6
0)
Induction Base:
compS_f#1(gen_compS_f:id4_0(0), gen_S:0'3_0(b)) →RΩ(1)
S(gen_S:0'3_0(b))
Induction Step:
compS_f#1(gen_compS_f:id4_0(+(n6_0, 1)), gen_S:0'3_0(b)) →RΩ(1)
compS_f#1(gen_compS_f:id4_0(n6_0), S(gen_S:0'3_0(b))) →IH
gen_S:0'3_0(+(+(1, +(b, 1)), c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
compS_f#1(
compS_f(
x2),
x1) →
compS_f#1(
x2,
S(
x1))
compS_f#1(
id,
x3) →
S(
x3)
iter#3(
0') →
iditer#3(
S(
x6)) →
compS_f(
iter#3(
x6))
main(
0') →
0'main(
S(
x9)) →
compS_f#1(
iter#3(
x9),
0')
Types:
compS_f#1 :: compS_f:id → S:0' → S:0'
compS_f :: compS_f:id → compS_f:id
S :: S:0' → S:0'
id :: compS_f:id
iter#3 :: S:0' → compS_f:id
0' :: S:0'
main :: S:0' → S:0'
hole_S:0'1_0 :: S:0'
hole_compS_f:id2_0 :: compS_f:id
gen_S:0'3_0 :: Nat → S:0'
gen_compS_f:id4_0 :: Nat → compS_f:id
Lemmas:
compS_f#1(gen_compS_f:id4_0(n6_0), gen_S:0'3_0(b)) → gen_S:0'3_0(+(+(1, n6_0), b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_S:0'3_0(0) ⇔ 0'
gen_S:0'3_0(+(x, 1)) ⇔ S(gen_S:0'3_0(x))
gen_compS_f:id4_0(0) ⇔ id
gen_compS_f:id4_0(+(x, 1)) ⇔ compS_f(gen_compS_f:id4_0(x))
The following defined symbols remain to be analysed:
iter#3
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
iter#3(
gen_S:0'3_0(
n590_0)) →
gen_compS_f:id4_0(
n590_0), rt ∈ Ω(1 + n590
0)
Induction Base:
iter#3(gen_S:0'3_0(0)) →RΩ(1)
id
Induction Step:
iter#3(gen_S:0'3_0(+(n590_0, 1))) →RΩ(1)
compS_f(iter#3(gen_S:0'3_0(n590_0))) →IH
compS_f(gen_compS_f:id4_0(c591_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
compS_f#1(
compS_f(
x2),
x1) →
compS_f#1(
x2,
S(
x1))
compS_f#1(
id,
x3) →
S(
x3)
iter#3(
0') →
iditer#3(
S(
x6)) →
compS_f(
iter#3(
x6))
main(
0') →
0'main(
S(
x9)) →
compS_f#1(
iter#3(
x9),
0')
Types:
compS_f#1 :: compS_f:id → S:0' → S:0'
compS_f :: compS_f:id → compS_f:id
S :: S:0' → S:0'
id :: compS_f:id
iter#3 :: S:0' → compS_f:id
0' :: S:0'
main :: S:0' → S:0'
hole_S:0'1_0 :: S:0'
hole_compS_f:id2_0 :: compS_f:id
gen_S:0'3_0 :: Nat → S:0'
gen_compS_f:id4_0 :: Nat → compS_f:id
Lemmas:
compS_f#1(gen_compS_f:id4_0(n6_0), gen_S:0'3_0(b)) → gen_S:0'3_0(+(+(1, n6_0), b)), rt ∈ Ω(1 + n60)
iter#3(gen_S:0'3_0(n590_0)) → gen_compS_f:id4_0(n590_0), rt ∈ Ω(1 + n5900)
Generator Equations:
gen_S:0'3_0(0) ⇔ 0'
gen_S:0'3_0(+(x, 1)) ⇔ S(gen_S:0'3_0(x))
gen_compS_f:id4_0(0) ⇔ id
gen_compS_f:id4_0(+(x, 1)) ⇔ compS_f(gen_compS_f:id4_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
compS_f#1(gen_compS_f:id4_0(n6_0), gen_S:0'3_0(b)) → gen_S:0'3_0(+(+(1, n6_0), b)), rt ∈ Ω(1 + n60)
(14) BOUNDS(n^1, INF)
(15) Obligation:
Innermost TRS:
Rules:
compS_f#1(
compS_f(
x2),
x1) →
compS_f#1(
x2,
S(
x1))
compS_f#1(
id,
x3) →
S(
x3)
iter#3(
0') →
iditer#3(
S(
x6)) →
compS_f(
iter#3(
x6))
main(
0') →
0'main(
S(
x9)) →
compS_f#1(
iter#3(
x9),
0')
Types:
compS_f#1 :: compS_f:id → S:0' → S:0'
compS_f :: compS_f:id → compS_f:id
S :: S:0' → S:0'
id :: compS_f:id
iter#3 :: S:0' → compS_f:id
0' :: S:0'
main :: S:0' → S:0'
hole_S:0'1_0 :: S:0'
hole_compS_f:id2_0 :: compS_f:id
gen_S:0'3_0 :: Nat → S:0'
gen_compS_f:id4_0 :: Nat → compS_f:id
Lemmas:
compS_f#1(gen_compS_f:id4_0(n6_0), gen_S:0'3_0(b)) → gen_S:0'3_0(+(+(1, n6_0), b)), rt ∈ Ω(1 + n60)
iter#3(gen_S:0'3_0(n590_0)) → gen_compS_f:id4_0(n590_0), rt ∈ Ω(1 + n5900)
Generator Equations:
gen_S:0'3_0(0) ⇔ 0'
gen_S:0'3_0(+(x, 1)) ⇔ S(gen_S:0'3_0(x))
gen_compS_f:id4_0(0) ⇔ id
gen_compS_f:id4_0(+(x, 1)) ⇔ compS_f(gen_compS_f:id4_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
compS_f#1(gen_compS_f:id4_0(n6_0), gen_S:0'3_0(b)) → gen_S:0'3_0(+(+(1, n6_0), b)), rt ∈ Ω(1 + n60)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
compS_f#1(
compS_f(
x2),
x1) →
compS_f#1(
x2,
S(
x1))
compS_f#1(
id,
x3) →
S(
x3)
iter#3(
0') →
iditer#3(
S(
x6)) →
compS_f(
iter#3(
x6))
main(
0') →
0'main(
S(
x9)) →
compS_f#1(
iter#3(
x9),
0')
Types:
compS_f#1 :: compS_f:id → S:0' → S:0'
compS_f :: compS_f:id → compS_f:id
S :: S:0' → S:0'
id :: compS_f:id
iter#3 :: S:0' → compS_f:id
0' :: S:0'
main :: S:0' → S:0'
hole_S:0'1_0 :: S:0'
hole_compS_f:id2_0 :: compS_f:id
gen_S:0'3_0 :: Nat → S:0'
gen_compS_f:id4_0 :: Nat → compS_f:id
Lemmas:
compS_f#1(gen_compS_f:id4_0(n6_0), gen_S:0'3_0(b)) → gen_S:0'3_0(+(+(1, n6_0), b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_S:0'3_0(0) ⇔ 0'
gen_S:0'3_0(+(x, 1)) ⇔ S(gen_S:0'3_0(x))
gen_compS_f:id4_0(0) ⇔ id
gen_compS_f:id4_0(+(x, 1)) ⇔ compS_f(gen_compS_f:id4_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
compS_f#1(gen_compS_f:id4_0(n6_0), gen_S:0'3_0(b)) → gen_S:0'3_0(+(+(1, n6_0), b)), rt ∈ Ω(1 + n60)
(20) BOUNDS(n^1, INF)